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AMG:
What is Algebraic Multigrid??

● Any multilevel method where geometry is not used
(and may not be available) to build coarse grids,
interpolation and restriction, or coarse-grid
operators.

● “Classical” AMG was introduced by Brandt,
McCormick and Ruge in 1982.  It was explored
early on by Stueben in 1983, and popularized by
Ruge and Stuben in 1987.

● This tutorial will describe only the classical AMG
algorithm.
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AMG:
What is Algebraic Multigrid??

● Many other algorithms qualify under the definition
given. Some whose approaches are closely related
to “classical AMG”:

• Chang
• Griebel, Neunhoeffer, Regler

• Huang
• Krechel, Stueben

• Zaslavsky

● Work close to the original, but using different
approaches to coarsening or interpolation:

• Fuhrmann
•Kickinger
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AMG:
What is Algebraic Multigrid??

● Other approaches that are important, novel,
historical, or weird:

• Multigraph methods (Bank & Smith)
• Aggregation methods (Braess; Chan & Zikatanov & Xu )
• Smoothed Aggregation methods (Mandel & Brezina & Vanek)
• Black Box Multigrid (Dendy, Dendy & Bandy)
• Algebraic Multilevel Recursive Solver  (Saad)
• Element based algebraic multigrid (Chartier; Cleary et al)
• MultiCoarse correction with Suboptimal Operators (Sokol)
• Multilevel block ILU methods (Jang & Saad; Bank & Smith &

 Wagner; Reusken)
• AMG based on Element Agglomeration (Jones & Vassilevski)
• Sparse Approximate Inverse Smoothers (Tang & Wan)
• Algebraic Schur-Complement approaches (Axelsson &

Vassilevski & Neytcheva)
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Highlights of Multigrid:
The 1-d Model Problem

● Poisson’s equation:               in [0,1], with
boundary conditions                            .

● Discretized as:

● Leads to the Matrix equation           ,  where
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Highlights of Multigrid:
Weighted Jacobi Relaxation

● Consider the iteration:

● Letting A = D+L+U,  the matrix form is:

                                                                 .

● It is easy to see that if                          ,
then
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 Highlights of Multigrid:
Relaxation Typically Stalls

● The eigenvectors of    are the same as those of  ,
and are Fourier Modes:

● The eigenvalues of      are                     , so
the effect of relaxation on the modes is:

A
NkNkivi −,…,,=,)/π(= 121nis

2nis21 )/π(ω− 2 Nk
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out  the  low
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Highlights of Multigrid:
Relaxation Smooths the Error

● Initial error,

● Error after several iteration
sweeps:

0 0 . 5 1

- 2

- 1

0

1

2

0 0 . 5 1

- 2

- 1

0

1

2

Many relaxation
schemes

have the smoothing
property, where

oscillatory
modes of the error

are
eliminated

effectively, but
smooth modes are

damped
very slowly.
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Highlights of Multigrid: Smooth error
can be represented on a coarse grid

● A smooth function:

● Can be represented by linear
interpolation from a coarser
grid:

0 0 . 5 1
- 1

- 0 . 5
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0 . 5
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- 1

- 0 . 5

0

0 . 5

1

On the coarse grid, the 
smooth error appears to
be relatively higher in 

frequency: in the example
it is the 4-mode, out of
a possible 16, on the fine
grid, 1/4 the way up the
spectrum.  On the coarse 
grid, it is the 4-mode out
of a possible 8, hence it
is 1/2 the way up the 

spectrum.

Relaxation will be more
effective on this mode if
done on the coarser grid!!
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Highlights of Multigrid:
Coarse-grid Correction

● Perform relaxation on            on fine grid until
error is smooth.

● Compute residual,             and transfer to the
coarse grid              .

● Solve the coarse-grid residual equation to obtain
the error:

● Interpolate the error to the fine grid and correct
the fine-grid solution:

fuA hhh =

uAfr hhhh −=
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Highlights of Multigrid:
Coarse-grid Correction

Relax on fuA hhh =
uAfr hhhh −=Compute

rIr 22 hh
h

h =
Restrict

Solve reA 222 hhh =
rAe 2122 hhh )(= −

Correct

eIe hh
h

h ≈ 2
2

Interpolate

euu hhh +←
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Highlights of Multigrid:
Tools Needed

● Interpolation and restriction operators:

       Linear        Injection           Full-weighting
 Interpolation
● Coarse-grid Operator     .   Two methods:
      (1) Discretize equation at larger spacing
      (2) Use Galerkin Formula:
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Highlights of Multigrid:
Recursion: the (  ,0) V-cycle

● Major question: How do we “solve” the coarse-grid
residual equation? Answer: recursion!
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Algebraic multigrid:
 for unstructured-grids

● Automatically defines coarse “grid”

● AMG has two distinct phases:
— setup phase: define MG components
— solution phase: perform MG cycles

● AMG approach is opposite of geometric
MG

— fix relaxation (point Gauss-Seidel)
— choose coarse “grids” and prolongation, P,

so that error not reduced by relaxation is
in range(P)

— define other MG components so that
coarse-grid correction eliminates error in
range(P) (i.e., use Galerkin principle)

 (in contrast, geometric MG fixes coarse grids,
then defines suitable operators and smoothers)
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AMG has two phases:

● Setup Phase
— Select Coarse “grids,”

— Define interpolation,

— Define restriction and coarse-grid operators
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●   Solve Phase
— Standard multigrid operations, e.g., V-cycle, W-
cycle, FMG, etc
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In AMG, we choose relaxation first:

● Typically, pointwise Gauss-Seidel is used

● The iteration is developed:

● Add and subtract                      to get:

ULDA )++(=

bxA =
−=)+( xUbxLD

xULDbLDx dlowen )+(−)+(= −− 11

rLDxx dlodlowen )+(+= −1

)+()+( xLDLD −1 dlo
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Gauss-Seidel relaxation
error propagation:

● The iteration is:

● Subtracting both sides from the exact solution:

● Using               this can be written as:

rLDxx dlodlowen )+(+= −1

rLDxxxx dlodlotcaxewentcaxe ))+(+(−=− −1

rLDee dlodlowen )+(−= −1

eAr =

eALDIe dlowen )+(−= −1
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An observation: error that is slow
to converge      “small” residuals

● Consider the iterative method error recurrence

● Error that is slow to converge satisfies

● Perhaps a better viewpoint is

eAQIe kk −+ 11 )−(=

≈)−( eeAQI −1 ≈� eAQ−1 0

≈� r 0

≈)−( eeAQI −1

�
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Some implications
of slow convergence

● For most iterations (e.g., Jacobi or Gauss-Seidel)
this last holds if                          .  (1)

● Hence               implying that, on average,

● An implication is that, if   is an error slow to
converge, then locally at least,    can be well-
approximated by an average of its neighbors:
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In Multigrid, error that is slow
to converge is geometrically smooth

● Combining the algebraic property that slow
convergence implies “small residuals” with the
observation above, in AMG we DEFINE smooth
error:

● Smooth error is that error which is slow to
converge under relaxation, that is,

or, more precisely,
≈)−( eeAQI −1

||||≈||)−(|| eeAQI −1
AA
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But sometimes, smooth error isn’t!
(example from Klaus Stueben)

● Consider the problem

● on the unit square, using a regular Cartesian grid,
with finite difference stencils and values for
a,b,and c:
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But sometimes, smooth error isn’t!

● Using a zero right-hand side and a random initial
guess, after 8 sweeps of Gauss-Seidel iteration
the error is unchanging in norm. By our definition,
the error is smooth.  And it looks like this:

),(=+)(−)(− yxfucubua yxyyxx
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Smooth error for
),(=+)(−)(− yxfucubua yxyyxx
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AMG uses dependence (influence) to
determine MG components

● We need to choose a subset of the gridpoints
(coarse grid) that can be used 1) to represent
smooth errors, and 2) to interpolate these errors
to the fine grid.

● Intuitively, a point    is a good candidate for a C-
point if its value is important in determining the
value of another point,     in the ith equation.

● If the     coefficient is “large” compared to the
other off-diagonal coefficients in the ith equation
then    influences     (or     depends on    ).

uj

ui
a ji

uj ui ui uj
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Dependence and smooth error

● For M-matrices, we define “i depends on j ” by

     alternatively, “ j influences i. ”

● It is easy to show from (1) that smooth error
satisfies                                 (2)eeDeeA ,, «

≤θ<,}−{θ≥− aa kiikji 10xam
≠



veh 26CASC

Dependence and smooth error

● For M-matrices, we have from (2)

— If    does not depend on    then the inequality
may be satisfied because     is “small”.

— If    does depend on   , then     need not be
small, and the inequality must be satisfied by

● This implies that smooth error varies slowly in the
direction of dependence.
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Some useful definitions

● The set of dependencies of a variable    , that is,
the variables upon whose values the value of
depends, is defined as

● The set of points that     influences is denoted:
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More useful definitions

● The set of coarse-grid variables is denoted  C .

● The set of fine-grid variables is denoted F.

● The set of coarse-grid variables used to
interpolate the value of the fine-grid variable    ,
called the coarse interpolatory set for i, is
denoted       .

ui

Ci
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Two Criteria for Choosing
 the Coarse Grid Points

● First Criterion:  F - F dependence

— (C1) For each       , each point         should
either be in     itself or should depend on  at
least one point in     .

i ∈ F
C

Ci

Sj ∈ i

i ∈ F

Sj ∈ i Ck ∈ i

Cn ∈ i

Since the value of     depends on
the value of     , the value of
must be represented on the coarse-
grid for good interpolation.  If j
isn’t a C-point, it should depend on
a point in       so its value is
“represented” in the interpolation.

ui
uj uj

Ci
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Two Criteria for Choosing
 the Coarse Grid Points

● Second Criterion: Maximal Subset

— (C2)      should be a maximal subset with the
property that no    -point depends on another.

—  (C1) tends to increase the number of   -points.
In general, the more    -points on    ,  the
better the h-level convergence.

— But more C-points means more work for
relaxation and interpolation.

— (C2) is designed to limit the size (and work) of
the coarse grid.

C
C

C
C ΩH
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Two Criteria for Choosing
 the Coarse Grid Points

● It is sometimes not possible to satisfy both
criteria simultaneously (an example will be seen
shortly).

● In those cases, we choose to satisfy (C1), the
requirement that F-F dependencies be represented
in the coarse-interpolatory set, while using (C2) as
a guide.

● This choice leads to somewhat larger coarse grids,
but tends to preserve good convergence properties.
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Choosing the Coarse Grid Points

● Assign to each gridpoint k a “value” equal to the
number of points that depend on k.

● Choose the first point with global maximum value
as a C-point.

● The new C-point can be used to interpolate values
of points it influences.  Assign them all as F-
points.

● Other points influencing these new F-points can be
used in their interpolation.  Increment their value.

● Repeat until all points are C- or F-points.
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Ruge AMG:
          start

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3
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Ruge AMG:
          select C-pt 1

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

3 5 5 5 5 5 3
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Ruge AMG:
          select F-pt 1

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

5 8 8 8 8 8 5

8 8 8 5

8 8 8 5

5 5 5 3
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Ruge AMG:
          update F-pt neighbors 1

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

11 8 8 5

7 5 5 3
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Ruge AMG:
          select C-pt 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

10 8 8 5

8 8 5

7 5 5 3
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Ruge AMG:
          select F-pt 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 10 9 8 8 5

8 5

8 5

5 3
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Ruge AMG:
          update F-pt neighbors 2

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 10 9 5

10 5

11 5

6 3
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Ruge AMG: select C-pt, F-pts,
update neighbors 3

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

5 8 8 8 8 8 5

5 8 8 8 8 8 5

7 11 11 11 11 11 7
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Ruge AMG: select C-pt, F-pts,
update neighbors 4

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

7 11 10 9 8 8 5

10 8 8 5

13 11 11 7



veh 42CASC

Ruge AMG: select C-pt, F-pts,
update neighbors 5

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

3 5 5 5 5 5 3

7 11 11 11 10 9 5

10 5

13 7
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Ruge AMG: select C-pt, F-pts,
update neighbors 6,7,8,9

➨ select next C-pt
with maximal
measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors
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Examples: Laplacian Operator
5-pt FD, 9-pt FE (quads), and 9-pt FE (stretched quads)

�
�
�−−−

−−
−−−

�
�
� 111

181
111

�
�
�−

−−
−

�
�
� 1

141
1

5-pt FD 9-pt FE (quads)
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8 8 8 8

8 8 8 8

8 8 8 8
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of F-pt neighbors

10 8 8 10

11 10 9 8 8 9 10

8 8 8 8 8 8 8

8 8 8 8 8 8 8

11 10 9 8 8 9 10

8 8 10

11 8 8 11

10



veh 49CASC

 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

10 10

11 11 11 10 9 9 10

8 8 8 8 8 8 8

8 8 8 8 8 8 8

11 11 11 10 9 9 10

10 10

11 11
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

11 11 11 11 11 11 11

8 8 8 8 8 8 8

8 8 8 8 8 8 8

11 11 11 11 11 11 11
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

11 11 11 11 11 11 11

11 10 9 8 8 9 10

10 8 8 10

13 11 11 13
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

11 11 11 11 11 11 11

11 11 11 10 9 9 10

10 10

13 13
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

11 11 11 11 11 11 11

11 11 11 11 11 11 11
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

13 11 11 13

13 11 11 13



veh 55CASC

 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ select C-pt with
maximal measure

➨ select neighbors
as F-pts

➨ update measures
of new F-pt
neighbors

13 13

13 13
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ Modulo periodicity,
it’s the same
coarsening as in
the Dirichlet case.

➨ However, it has
many F-F
connections that do
not share a common
C-point
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 Coarse-grid selection: 9pt Laplacian,
periodic boundary conditions

➨ A second pass is made
in which some F-points
are made into C-points
to enforce (C1).

➨ Goals of the second
pass include minimizing
C-C connections, and
minimizing the number
of C-points converted
to F-points.
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 How well does AMG coarsen:

➨ In each region, AMG
coarsens only in the
direction of
dependence!

a=1
b=1000

c=0

a=1
b=1
c=0

A=1
b=1
c=2

a=1000
b=1
c=0

),(=+)(−)(− yxfucubua yxyyxx
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 How well does AMG coarsen:

➨ In each region, AMG
coarsens only in the
direction of
dependence!

a=1
b=1000

c=0

),(=+)(−)(− yxfucubua yxyyxx
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 How well does AMG coarsen:

➨ In each region, AMG
coarsens only in the
direction of
dependence!

a=1000
b=1
c=0

),(=+)(−)(− yxfucubua yxyyxx
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 How well does AMG coarsen:

➨ In each region, AMG
coarsens only in the
direction of
dependence!

a=1
b=1
c=0

),(=+)(−)(− yxfucubua yxyyxx
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 How well does AMG coarsen:

➨ In each region, AMG
coarsens only in the
direction of
dependence!

A=1
b=1
c=2

),(=+)(−)(− yxfucubua yxyyxx
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Prolongation

The interpolated value at
point i is just    if i is a C-
point.  If i is an F-point,
the value is a weighted sum
of the values of the points in
the coarse interpolatory set
    .

ei

Ci

∈,ω

∈,�
�
�
�
�

=)( Fie

Cie
eP

kki
Ck

i

i �
∈ i

i
CC

C

F
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To define prolongation at i, we must
examine the types of connections of   .

Sets of connection types:

i is dependent on these
coarse interpolatory C-
points.

i is dependent on these F-
points.

i does not depend on these
“weakly connected” points,
which may be C- or F-
points.
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i
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i

i
CC
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FF
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Prolongation is based on smooth error
and dependencies (from M-matrices)

Recall that smooth error is characterized by
“small” residuals:

eaear jji
Nj

iiii ≈+= �
∈ i

0

eaea jji
ij

iii −≈ �
≠

which we can rewrite as:

We base prolongation on this formula by
“solving” for    and making some approximating
substitutions.

ei
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Prolongation is based on smooth error
and dependencies (from M-matrices)

We begin by writing the smooth-error relation:
eaea jji

ij
iii −≈ �

≠

Identifying its component sums:
ea iii

Coarse
interpolatory

set

F-point
dependencies

Weak
connections

−−−≈ ��� jji
Dj

jji
Dj

jji
Cj ∈∈∈ w

i
s
ii

eaeaea

We must approximate    in each of the last
two sums in terms of    or of    for        .ei

ej ej Cj ∈ i
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i
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C

F

FF

For the weak connections:
let           .ee ij ≈

Coarse
interpolatory

set

F-point
dependencies

Weak
connections

ea iii −−−≈ ��� jji
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i
s
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eaeaea

This approximation can’t hurt too much:
• Since the connection is weak.
• If i depended on points in   , smooth error varies
slowly in the direction of dependence

Dw
i

Effectively, this throws the weak
connections onto the diagonal:
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i
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FF

For the F-point dependencies:
use a weighted avg. of errors in        .

Coarse
interpolatory set

F-point
dependencies

Weak
connections

It is for this reason that the intersection of the
coarse interpolatory sets of two F-points with a
dependence relationship must be nonempty (C1).

CC ji ∩

Approximate    by a
weighted average of
the    in the coarse
interpolatory set
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Finally, the prolongation
weights are defined

 Making the previous substitution, and with a bit of
messy algebra, the smooth error relation can be
“solved” for       to yield the interpolation formula:

 where the prolongation weights are given:
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Highlights of Multigrid:
Storage:  ,   must be stored each level

●   In 1-d, each coarse grid has about half
   the number of points as the finer grid.

●  In 2-d, each coarse grid has about one-
   fourth the number of points as the finer 
   grid.

●  In d-dimensions, each coarse grid has 
   about         the number of points as the 
   finer grid.

2− d

21

2
222212

N
N

d

d
dMdddd

−
<)+…++++(

−
−−−− 32

●  Storage cost:

    less than 2, 4/3, 8/7 the cost of storage on the fine grid
    for 1, 2, and 3-d problems, respectively.

uhf h
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AMG storage:
grid complexity

● For AMG there is no simple predictor for total
storage costs.   ,     , and
must be stored on all levels.

um f m IAIA m
m

mm
m

m = −−
−

11
1

σΩ

u f
2σΩ

● Define     , the grid complexity, as the total
number of unknowns (gridpoints) on all levels,
divided by the number of unknowns on the finest
level.  Total storage of the vectors    and
occupy        storage locations.
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AMG storage:
operator complexity

● Define     , the operator complexity, as the total
number of nonzero coefficients of all operators
divided by the number of nonzero coefficients in
the fine-level operator    .  Total storage of the
operators occupies      storage locations.

σA
A m

A 0

σA



veh 73CASC

AMG storage:
interpolation

● We could define     , an interpolation complexity,
as the total number of nonzero coefficients of all
operators       divided by the number of nonzero
coefficients in the operator    . This measure is
not generally cited, however (like most
multigridders, the AMG crowd tends to ignore the
cost of intergrid transfers).

● Two measures that occasionally appear are     ,
the average “stencil size,” and    , the average
number of interpolation points per F-point.

σI

Im
m
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I 1
0

κ A
κ I
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AMG Setup Costs:
 flops

● Flops in the setup phase are only a small portion of
the work, which includes sorting, maintaining
linked-lists, keeping counters, storage
manipulation, and garbage collection.

● Estimates of the total flop count to define
interpolation weights (   ) and the coarse-grid
operators (   ) are:

                           and

ωI

ωA

)−)κ−κ((κ=ω IAII N 23

)κ+κ+)κ−κ(κ(κ=ω AIIAIIA N 32
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AMG setup costs:
a bad rap

● Many geometric MG methods need to compute
prolongation and coarse-grid operators

● The only additional expense in the AMG setup phase
is the coarse grid selection algorithm

● AMG setup phase is only 10-25% more
expensive than in geometric MG and may
be considerably less than that!
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Highlights of Multigrid:
Computation Costs

● Let 1 Work Unit (WU) be the cost of one
relaxation sweep on the fine-grid.

● Ignore the cost of restriction and interpolation
(typically about 20% of the total cost). (See?)

● Consider a V-cycle with 1 pre-Coarse-Grid
correction relaxation sweep and 1 post-Coarse-
Grid correction relaxation sweep.

21

2
222212

−
<)+…++++(

−
−−−−

d
dMddd 32

● Cost of V-cycle (in WU):

● Cost is about 4, 8/3, 16/7 WU per V-cycle in 1,
2, and 3 dimensions.
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AMG Solve Costs:
 flops per cycle

● The approximate number of flops in on level m for
one relaxation sweep, residual transfer, and
interpolation are (respectively)

    where     is the number of coefficients in
and         are the numbers of C-, F-points on    .

2N A
m 22 NN F

mIA
m κ+ NN F

mIC
m κ+ 2

N A
m A m

NN F
m

C
m , Ωm

)ν,ν( 21

�
F
m

m
NN ≈ ν+ν=ν 21

N )−σ+κ+σκ)+ν(( 1412 IA ΩΩ

● The total flop count for a         V-cycle, noting
that            and letting              is
approximately
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AMG Solve Costs:
 flops per cycle, again

● All that is very well, but in practice we find the
solve phase is generally dominated by the cost of
relaxation and computing the residual.

● Both of those operations are proportional to the
number of nonzero entries in the operator matrix
on any given level.

● Thus the best measure of the ratio of work done
on all levels to the work done on the finest level is
operator complexity:

σA
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Highlights of Multigrid: difficulties-
anisotropic operators and grids

● Consider the operator :

● The same phenomenon
occurs for grids with much
larger spacing in one direction
than the other:
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●    If          then the GS-
smoothing factors in the x- and y-
directions are shown at right.
Note that GS relaxation does not
damp oscillatory components in the
x-direction.
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Highlights of Multigrid: difficulties-
discontinuous or anisotropic coefficients

● Consider the operator:                       , where

● Solutions:  line-relaxation (where whole gridlines
of values are found simultaneously), and/or semi-
coarsening (coarsening only in the strongly coupled
direction).

●  Again, GS-smoothing factors in the x- and y-
directions can be highly variable, and very often, GS
relaxation does not damp oscillatory components in the
one or both directions.
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AMG does semi-coarsening
automatically!
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● Consider the operator :

● In the limit, as                  , the
stencil becomes:

∞�α

● AMG
automatically
produces a
semi-coarsened
grid!!
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AMG Convergence:
there is theory (some)

● There is some theory, although it is of limited
utility. It generally looks like:

● Theorem
— Let         be SPD, and let the interpolation

operator       be full rank, and let restriction
and coarse-grid operators be defined by

                        and
and let there be smoothing operators     and
coarse-grid correction operators

AA m ≡
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AMG Convergence:
there is theory (some)

● Theorem (continued)
— suppose that, for all     ,

   holds for some        independently for all
and    .

Then       , and, provided the coarsest problem is
solved and at least one smoothing step is
performed after each coarse-grid correction
step, the V-cycle has a convergence factor wrt
the energy norm bounded above by

                              .

em

||||δ−||||≤|||| eTeeG A
mm

A
m

A
mm 222

≤δ 1

em

m
>δ 0

1 δ−



veh 84CASC

How’s it perform (vol I)?
Regular grids, plain, old, vanilla problems

● The Laplace Operator:

● Anisotropic Laplacian:

 Convergence Time Setup

Stencil per cycle Complexity per Cycle Times

5-pt 0.054 2.21 0.29 1.63
5-pt skew 0.067 2.12 0.27 1.52
9-pt (-1,8) 0.078 1.30 0.26 1.83
9-pt (-1,-4,20) 0.109 1.30 0.26 1.83

−ε− UU yyxx

Epsilon 0.001 0.01 0.1 0.5 1 2 10 100 1000
Convergence/cycle 0.084 0.093 0.058 0.069 0.056 0.079 0.087 0.093 0.083
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How’s it perform (vol II)?
Structured Meshes, Rectangular Domains

● 5-point Laplacian on regular rectangular grids
Convergence factor (y-axis) plotted against number of nodes (x-axis)

0 .0 5 5

0 .0 8 2

0 .1 4 60 .1 4 2
0 .1 3 5 0 .1 3 3

0
0 .0 2
0 .0 4
0 .0 6
0 .0 8

0 .1
0 .1 2
0 .1 4
0 .1 6

0 5 0 0 0 0 0 1 0 0 0 0 0 0



veh 86CASC

How’s it perform (vol III)?
Unstructured Meshes, Rectangular Domains

● Laplacian on random unstructured grids (regular
triangulations, 15-20% nodes randomly collapsed into neighboring nodes)

Convergence factor (y-axis) plotted against number of nodes (x-axis)

0 .0 9 7
0 .1 1 1

0 .2 5 3

0 .1 7 5

0 .2 2 3

0

0 . 0 5

0 . 1

0 . 1 5

0 . 2

0 . 2 5

0 . 3

0 2 0 0 0 0 4 0 0 0 0 6 0 0 0 0



veh 87CASC

How’s it perform (vol IV)?
Isotropic diffusion, Structured/Unstructured Grids

                                      on structured, unstructured grids

Problems used: “a” means parameter c=10, “b” means c=1000
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How’s it perform (vol IVa)?
Isotropic diffusion, Structured/Unstructured Grids

                                      on structured, unstructured grids

Problem used: “a” means parameter c=10, “b” means c=1000
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How’s it perform (vol V)?
Laplacian operator, unstructured Grids

Convergence factor
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So, what could go wrong?
Strong F-F connections: weights are dependent on each other

● For point   the value    is interpolated from   ,    ,
and is needed to make the interpolation weights for
approximating     .

● For point   the value    is interpolated from   ,   ,
and is needed to make the interpolation weights for
approximating    .

● It’s an implicit system!
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Is there a fix?

● A Gauss-Seidel like iterative approach to weight
definition is implemented.  Usually two passes
suffice.  But does it work?

theta Standard Iterative
0.25 0.47 0.14

0.5 0.24 0.14

0.25 0.83 0.82
0.5 0.53 0.23

Convergence factors for
Laplacian, stretched quadrilaterals

∆=∆ yx 01

∆=∆ yx 001

●   Frequently, it does:



veh 92CASC

Another Fix: indirect interpolation
(see Stueben’s text for detail)

● The 5-point problem cannot give “full” coarsening
because the F-point in the middle has no
connection to any of the 4 C-points. Hence, there
is no way to interpolate its value.
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Another Fix: indirect interpolation
(see Stueben’s text for detail)

● Full coarsening could be achieved by indirect
interpolation.

● First interpolate the F-points from the C-points.
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Another Fix: indirect interpolation
(see Stueben’s text for detail)

● Full coarsening could be achieved by indirect
interpolation.

● First interpolate the F-points from the C-points.
● Then interpolate the “middle” from the F-points.

● Similar treatment could be applied whenever F-F
dependencies arise.



veh 95CASC

AMG for systems

● How can we do AMG on systems?

● Naïve approach: “Block” approach (block Gauss-Seidel,
using scalar AMG to “solve” at each cycle)
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●   Great Idea! Except that it doesn’t work! (relaxation
does not evenly smooth errors in both unknowns)
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AMG for systems: a solution

● To solve the system problem, allow interaction
between the unknowns at all levels:

                                            and

● This is called the “unknown” approach.
● Results: 2-D elasticity, uniform quadrilateral

mesh:
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mesh spacing 0.125 0.0625 0.03135 0.015625
Convergence factor 0.22 0.35 0.42 0.44
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So, what else can go wrong?
Ouch! Thin body elasticity!

● Elasticity, 3-d, thin bodies!
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● Slide surfaces, Lagrange multipliers,
force balance constraints:

● S is “generally” positive definite, V
can be zero,           .TUT ≠

Wanted:

Good solution
method
for this
problem.
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Needed: more robust methods for
characterizing smooth error

● Consider quadrilateral finite elements on a
stretched 2D Cartesian grid (dx -> infinity):

● Direction of dependence is not apparent here
● Iterative weight interpolation will sometimes

compensate for mis-identified dependence
● Elasticity problems are still problematic
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Scalability is central for large-scale
parallel computing

● A code is scalable if it can effectively use
additional computational resources to solve larger
problems

● Many specific factors contribute to scalability:
— architecture of the parallel computer
— parallel implementation of the algorithms
— convergence rates of iterative linear solvers

Linear solver convergence can be discussed independent of parallel
computing, and is often overlooked as a key scalability issue.

Linear solver convergence can be discussed independent of parallel
computing, and is often overlooked as a key scalability issue.
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In Conclusion,
AMG Rules!

● Interest in AMG methods is high, and probably
still rising, because of the increasing importance
of terra-scale simulations on unstructured grids.

● AMG has been shown to be a robust, efficient
solver on a wide variety of problems of real-world
interest.

● Much research is underway to find effective ways
of parallelizing AMG, which is essential to large-
scale computing.
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